

 Navigation

 	
 index

 	Nyaplotjs stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/nyaplotjs/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/nyaplotjs/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Nyaplotjs stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/comment-close.png

README.html

 Navigation

 		
 index

 		Nyaplotjs stable documentation »

Nyaplotjs

[image: alt text]

Nyaplotjs is a back-end library for Nyaplot [https://github.com/domitry/nyaplot]. Its goal is to allow Ruby and other language users to create interactive plots in their favorite styles. Nyaplotjs provides useful interface to generate plots based on JSON object.

This software has been developed as a product in Google Summer of Code 2014 (GSoC2014). Please visit a website of SciRuby project [http://sciruby.com/blog/] to see the progress of this project.

Nyaplotjs and Nyaplot will be merged into one library before the end of GSoC 2014 term.

Demos

		Interactive 3-pane plot [http://www.domitry.com/gsoc/multi_pane2.html]

		Bar [http://bl.ocks.org/domitry/2f53781449025f772676]

		Histogram [http://bl.ocks.org/domitry/f0e3f5c91cb83d8d715e]

		Scatter [http://bl.ocks.org/domitry/308e27d8d12c1374e61f]

		Line [http://bl.ocks.org/domitry/e9a914b78f3a576ed3bb]

		Venn [http://bl.ocks.org/domitry/d70dff56885218c7ad9a]

		Histogram in another theme [http://bl.ocks.org/domitry/f215d5ff3bd3f5fec2ad]

How to use

General use

First, prepare an array as a data source.

var data = [{name:'type1',val:48}, {name:'type2',val:20}, {name:'type3',val:4}, {name:'type4',val:12}, {name:'type5',val:22}];

Next create plot.

var models = {data:data},panes: [{diagrams:[{type: 'bar', data: 'data1', options: {x:'name', y:'val1'}}],options:{width:500, height:500, xrange: ['type1','type2','type3','type4','type5'], yrange: [0,50]}}]};

Then load models into Nyaplotjs and it will begin to parse them and generate plot.

Nyaplot.core.parse(models, '#vis');

Click here [http://bl.ocks.org/domitry/2f53781449025f772676] to see the result.

Interactivity among panes

In order to enable this types of interactivity, you do not have to add any special attributes or lines. Creating multiple diagrams from one data source is enough.

This data includes 2 columns and one is for Histogram and the other is for Bar chart.

var mutation_types = ['c->a', 'g->a', 't->a'];
var values = d3.range(100).map(function(val){return {val1: d3.random.bates(10)(val), mutation_type: (val>50? mutation_types[0] : mutation_types[1])};});

Then create 2 diagrams from one data source.

var model1 = {data:{data1: values},panes: [{diagrams:[{type: 'histogram', data: 'data1', options: {value:'val1'}}], options:{xrange: [0,1], yrange: [0,30]}}]};
var model2 = {data:{},panes:[{diagrams:[{type:'bar', data: 'data1', options: {value:'mutation_type'}}],options:{xrange:['c->a', 'g->a', 't->a'], yrange: [0,100]}]};

If you want to filter data based on values mapped into x axis, add ‘filter’ attribute to ‘options’ in a pane.

var model1 = {data:{data1: values},panes: [{diagrams:[{type: 'histogram', data: 'data1', options: {value:'val1'}}], filter: {target: 'x'}, options:{xrange: [0,1], yrange: [0,30]}}]};

Click here [http://www.domitry.com/gsoc/multi_pane2.html] to see the result.

Building

You need to install npm before building Nyaplotjs.

cd Nyaplotjs
npm install
grunt release

Dependency

		d3.js version 3.4.4 or up

License

Copyright (C) 2014 by Naoki NishidaThis version of Nyaplotjs is licensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

contrib/almond/README.html

 Navigation

 		
 index

 		Nyaplotjs stable documentation »

 #almond

A replacement AMD [https://github.com/amdjs/amdjs-api/wiki/AMD] loader for
RequireJS [http://requirejs.org]. It is a smaller “shim” loader, providing the
minimal AMD API footprint that includes loader plugin [http://requirejs.org/docs/plugins.html] support.

Why

Some developers like to use the AMD API to code modular JavaScript, but after doing an optimized build,
they do not want to include a full AMD loader like RequireJS, since they do not need all that functionality.
Some use cases, like mobile, are very sensitive to file sizes.

By including almond in the built file, there is no need for RequireJS.
almond is around 1 kilobyte when minified with Closure Compiler and gzipped.

Since it can support certain types of loader plugin-optimized resources, it is a great
fit for a library that wants to use text templates [http://requirejs.org/docs/api.html#text]
or CoffeeScript [https://github.com/jrburke/require-cs] as part of
their project, but get a tiny download in one file after using the
RequireJS Optimizer [http://requirejs.org/docs/optimization.html].

If you are building a library, the wrap=true support in the RequireJS optimizer
will wrap the optimized file in a closure, so the define/require AMD API does not
escape the file. Users of your optimized file will only see the global API you decide
to export, not the AMD API. See the usage section below for more details.

So, you get great code cleanliness with AMD and the use of powerful loader plugins
in a tiny wrapper that makes it easy for others to use your code even if they do not use AMD.

Restrictions

It is best used for libraries or apps that use AMD and:

		optimize all the modules into one file – no dynamic code loading.

		all modules have IDs and dependency arrays in their define() calls – the RequireJS optimizer will take care of this for you.

		only have one requirejs.config() or require.config() call.

		do not use the var require = {}; style of passing config [http://requirejs.org/docs/api.html#config].

		do not use RequireJS multiversion support/contexts [http://requirejs.org/docs/api.html#multiversion].

		do not use require.toUrl() or require.nameToUrl().

		do not use packages/packagePaths config [http://requirejs.org/docs/api.html#packages]. If you need to use packages that have a main property, volo [https://github.com/volojs/volo] can create an adapter module so that it can work without this config. Use the amdify add command to add the dependency to your project.

What is supported:

		dependencies with relative IDs.

		define(‘id’, {}) definitions.

		define(), require() and requirejs() calls.

		loader plugins that can inline their resources into optimized files, and
can access those inlined resources synchronously after the optimization pass.
The text [http://requirejs.org/docs/api.html#text] and
CoffeeScript [https://github.com/jrburke/require-cs] plugins are two such plugins.

Download

Latest release [https://github.com/jrburke/almond/raw/latest/almond.js]

Usage

Download the RequireJS optimizer [http://requirejs.org/docs/download.html#rjs].

Download the current release of almond.js [https://github.com/jrburke/almond/raw/latest/almond.js].

Run the optimizer using Node [http://nodejs.org] (also works in Java [https://github.com/jrburke/r.js/blob/master/README.md]):

node r.js -o baseUrl=. name=path/to/almond include=main out=main-built.js wrap=true

This assumes your project’s top-level script file is called main.js and the command
above is run from the directory containing main.js. If you prefer to use a build.js build profile instead of command line arguments, this RequireJS optimization section [http://requirejs.org/docs/optimization.html#pitfalls] has info on how to do that.

wrap=true will add this wrapper around the main-built.js contents (which will be minified by UglifyJS:

(function () {
 //almond will be here
 //main and its nested dependencies will be here
}());

If you do not want that wrapper, leave off the wrap=true argument.

These optimizer arguments can also be used in a build config object, so it can be used
in runtime-generated server builds [https://github.com/jrburke/r.js/blob/master/build/tests/http/httpBuild.js].

Triggering module execution [bookmark: execution]

As of RequireJS 2.0 and almond 0.1, modules are only executed if they are
called by a top level require call. The data-main attribute on a script tag
for require.js counts as a top level require call.

However with almond, it does not look for a data-main attribute, and if your
main JS module does not use a top level require() or requirejs() call to
trigger module loading/execution, after a build, it may appear that the code
broke – no modules execute.

The 2.0 RequireJS optimizer has a build config, option insertRequire that you
can use to specify that a require([]) call is inserted at the end of the built
file to trigger module loading. Example:

node r.js -o baseUrl=. name=path/to/almond.js include=main insertRequire=main out=main-built.js wrap=true

or, if using a build config file:

{
 baseUrl: '.',
 name: 'path/to/almond',
 include: ['main'],
 insertRequire: ['main'],
 out: 'main-built.js',
 wrap: true
}

This will result with require(["main"]); at the bottom of main-built.js.

Exporting a public API

If you are making a library that is made up of AMD modules in source form, but will be built with almond into one file, and you want to export a small public
API for that library, you can use the wrap build config to do so. Build
config:

{
 baseUrl: '.',
 name: 'path/to/almond',
 include: ['main'],
 out: 'lib-built.js',
 wrap: {
 startFile: 'path/to/start.frag',
 endFile: 'path/to/end.frag'
 }
}

Where start.frag could look like this:

(function (root, factory) {
 if (typeof define === 'function' && define.amd) {
 //Allow using this built library as an AMD module
 //in another project. That other project will only
 //see this AMD call, not the internal modules in
 //the closure below.
 define(factory);
 } else {
 //Browser globals case. Just assign the
 //result to a property on the global.
 root.libGlobalName = factory();
 }
}(this, function () {
 //almond, and your modules will be inlined here

and end.frag is like this:

 //The modules for your project will be inlined above
 //this snippet. Ask almond to synchronously require the
 //module value for 'main' here and return it as the
 //value to use for the public API for the built file.
 return require('main');
}));

After the build, then the built file should be structured like so:

		start.frag

		almond.js

		modules for your lib, including ‘main’

		end.frag

Common errors

Explanations of common errors:

deps is undefined

Where this line is mentioned:

if (!deps.splice) {

It usually means that there is a define()’d module, but it is missing a name,
something that looks like this:

define(function () {});

when it should look like:

define('someName', function () {});

This is usually a sign that the tool you used to combine all the modules
together did not properly name an anonymous AMD module.

x missing y

It means that module ‘x’ asked for module ‘y’, but module ‘y’ was not available.

This usually means that ‘y’ was not included in the built file that includes almond.

almond can only handle modules built in with it, it cannot dynamically load
modules from the network.

No y

It means that a require('y') call was done but y was not available.

This usually means that ‘y’ was not included in the built file that includes almond.

almond can only handle modules built in with it, it cannot dynamically load
modules from the network.

How to get help

		Contact the requirejs list [https://groups.google.com/group/requirejs].

		Open issues in the issue tracker [https://github.com/jrburke/almond/issues].

Contributing

Almond follows the
same contribution model as requirejs [http://requirejs.org/docs/contributing.html]
and is considered a sub-project of requirejs.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Nyaplotjs stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/file.png

_static/down.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/minus.png

contrib/node-uuid/benchmark/README.html

 Navigation

 		
 index

 		Nyaplotjs stable documentation »

node-uuid Benchmarks

Results

To see the results of our benchmarks visit https://github.com/broofa/node-uuid/wiki/Benchmark

Run them yourself

node-uuid comes with some benchmarks to measure performance of generating UUIDs. These can be run using node.js. node-uuid is being benchmarked against some other uuid modules, that are available through npm namely uuid and uuid-js.

To prepare and run the benchmark issue;

npm install uuid uuid-js
node benchmark/benchmark.js

You’ll see an output like this one:

v4
nodeuuid.v4(): 854700 uuids/second
nodeuuid.v4('binary'): 788643 uuids/second
nodeuuid.v4('binary', buffer): 1336898 uuids/second
uuid(): 479386 uuids/second
uuid('binary'): 582072 uuids/second
uuidjs.create(4): 312304 uuids/second

v1
nodeuuid.v1(): 938086 uuids/second
nodeuuid.v1('binary'): 683060 uuids/second
nodeuuid.v1('binary', buffer): 1644736 uuids/second
uuidjs.create(1): 190621 uuids/second

		The uuid() entries are for Nikhil Marathe’s uuid module [https://bitbucket.org/nikhilm/uuidjs] which is a wrapper around the native libuuid library.

		The uuidjs() entries are for Patrick Negri’s uuid-js module [https://github.com/pnegri/uuid-js] which is a pure javascript implementation based on UUID.js [https://github.com/LiosK/UUID.js] by LiosK.

If you want to get more reliable results you can run the benchmark multiple times and write the output into a log file:

for i in {0..9}; do node benchmark/benchmark.js >> benchmark/bench_0.4.12.log; done;

If you’re interested in how performance varies between different node versions, you can issue the above command multiple times.

You can then use the shell script bench.sh provided in this directory to calculate the averages over all benchmark runs and draw a nice plot:

(cd benchmark/ && ./bench.sh)

This assumes you have gnuplot [http://www.gnuplot.info/] and ImageMagick [http://www.imagemagick.org/] installed. You’ll find a nice bench.png graph in the benchmark/ directory then.

 © Copyright .
 Created using Sphinx 1.3.1.

contrib/underscore/README.html

 Navigation

 		
 index

 		Nyaplotjs stable documentation »

 __
 /\ \ __
 __ __ ___ _\ \ __ _ __ ____ ___ ___ _ __ __ /_\ ____
/\ \/\ \ /' _ `\ /'_ \ /'__`\/\ __\/ ,__\ / ___\ / __`\/\ __\/'__`\ \/\ \ /',__\
\ \ _\ \/\ \/\ \/\ \ \ \/\ __/\ \ \//__, `\/\ __//\ \ \ \ \ \//\ __/ __ \ \ \/__, `\
 \ ____/\ _\ _\ ___,_\ ____\\ _\\/____/\ ____\ ____/\ _\\ ____\/_\ _\ \ \/____/
 \/___/ \/_/\/_/\/__,_ /\/____/ \/_/ \/___/ \/____/\/___/ \/_/ \/____/\/_//\ _\ \/___/
 \ ____/
 \/___/

Underscore.js is a utility-belt library for JavaScript that provides
support for the usual functional suspects (each, map, reduce, filter...)
without extending any core JavaScript objects.

For Docs, License, Tests, and pre-packed downloads, see:
http://underscorejs.org

Underscore is an open-sourced component of DocumentCloud:
https://github.com/documentcloud

Many thanks to our contributors:
https://github.com/jashkenas/underscore/contributors

 © Copyright .
 Created using Sphinx 1.3.1.

contrib/node-uuid/LICENSE.html

 Navigation

 		
 index

 		Nyaplotjs stable documentation »

 Copyright (c) 2010-2012 Robert Kieffer
MIT License - http://opensource.org/licenses/mit-license.php

 © Copyright .
 Created using Sphinx 1.3.1.

contrib/node-uuid/README.html

 Navigation

 		
 index

 		Nyaplotjs stable documentation »

node-uuid

Simple, fast generation of RFC4122 [http://www.ietf.org/rfc/rfc4122.txt] UUIDS.

Features:

		Generate RFC4122 version 1 or version 4 UUIDs

		Runs in node.js and all browsers.

		Registered as a ComponentJS [https://github.com/component/component] component [https://github.com/component/component/wiki/Components] (‘broofa/node-uuid’).

		Cryptographically strong random # generation on supporting platforms

		1.1K minified and gzip’ed (Want something smaller? Check this crazy shit [https://gist.github.com/982883] out!)

		Annotated source code [http://broofa.github.com/node-uuid/docs/uuid.html]

Getting Started

Install it in your browser:

<script src="uuid.js"></script>

Or in node.js:

npm install node-uuid

var uuid = require('node-uuid');

Then create some ids ...

// Generate a v1 (time-based) id
uuid.v1(); // -> '6c84fb90-12c4-11e1-840d-7b25c5ee775a'

// Generate a v4 (random) id
uuid.v4(); // -> '110ec58a-a0f2-4ac4-8393-c866d813b8d1'

API

uuid.v1([options [, buffer [, offset]]])

Generate and return a RFC4122 v1 (timestamp-based) UUID.

		options - (Object) Optional uuid state to apply. Properties may include:
		node - (Array) Node id as Array of 6 bytes (per 4.1.6). Default: Randomly generated ID. See note 1.

		clockseq - (Number between 0 - 0x3fff) RFC clock sequence. Default: An internally maintained clockseq is used.

		msecs - (Number | Date) Time in milliseconds since unix Epoch. Default: The current time is used.

		nsecs - (Number between 0-9999) additional time, in 100-nanosecond units. Ignored if msecs is unspecified. Default: internal uuid counter is used, as per 4.2.1.2.

		buffer - (Array | Buffer) Array or buffer where UUID bytes are to be written.

		offset - (Number) Starting index in buffer at which to begin writing.

Returns buffer, if specified, otherwise the string form of the UUID

Notes:

		The randomly generated node id is only guaranteed to stay constant for the lifetime of the current JS runtime. (Future versions of this module may use persistent storage mechanisms to extend this guarantee.)

Example: Generate string UUID with fully-specified options

uuid.v1({
 node: [0x01, 0x23, 0x45, 0x67, 0x89, 0xab],
 clockseq: 0x1234,
 msecs: new Date('2011-11-01').getTime(),
 nsecs: 5678
}); // -> "710b962e-041c-11e1-9234-0123456789ab"

Example: In-place generation of two binary IDs

// Generate two ids in an array
var arr = new Array(32); // -> []
uuid.v1(null, arr, 0); // -> [02 a2 ce 90 14 32 11 e1 85 58 0b 48 8e 4f c1 15]
uuid.v1(null, arr, 16); // -> [02 a2 ce 90 14 32 11 e1 85 58 0b 48 8e 4f c1 15 02 a3 1c b0 14 32 11 e1 85 58 0b 48 8e 4f c1 15]

// Optionally use uuid.unparse() to get stringify the ids
uuid.unparse(buffer); // -> '02a2ce90-1432-11e1-8558-0b488e4fc115'
uuid.unparse(buffer, 16) // -> '02a31cb0-1432-11e1-8558-0b488e4fc115'

uuid.v4([options [, buffer [, offset]]])

Generate and return a RFC4122 v4 UUID.

		options - (Object) Optional uuid state to apply. Properties may include:
		random - (Number[16]) Array of 16 numbers (0-255) to use in place of randomly generated values

		rng - (Function) Random # generator to use. Set to one of the built-in generators - uuid.mathRNG (all platforms), uuid.nodeRNG (node.js only), uuid.whatwgRNG (WebKit only) - or a custom function that returns an array[16] of byte values.

		buffer - (Array | Buffer) Array or buffer where UUID bytes are to be written.

		offset - (Number) Starting index in buffer at which to begin writing.

Returns buffer, if specified, otherwise the string form of the UUID

Example: Generate string UUID with fully-specified options

uuid.v4({
 random: [
 0x10, 0x91, 0x56, 0xbe, 0xc4, 0xfb, 0xc1, 0xea,
 0x71, 0xb4, 0xef, 0xe1, 0x67, 0x1c, 0x58, 0x36
]
});
// -> "109156be-c4fb-41ea-b1b4-efe1671c5836"

Example: Generate two IDs in a single buffer

var buffer = new Array(32); // (or 'new Buffer' in node.js)
uuid.v4(null, buffer, 0);
uuid.v4(null, buffer, 16);

uuid.parse(id[, buffer[, offset]])

uuid.unparse(buffer[, offset])

Parse and unparse UUIDs

		id - (String) UUID(-like) string

		buffer - (Array | Buffer) Array or buffer where UUID bytes are to be written. Default: A new Array or Buffer is used

		offset - (Number) Starting index in buffer at which to begin writing. Default: 0

Example parsing and unparsing a UUID string

var bytes = uuid.parse('797ff043-11eb-11e1-80d6-510998755d10'); // -> <Buffer 79 7f f0 43 11 eb 11 e1 80 d6 51 09 98 75 5d 10>
var string = uuid.unparse(bytes); // -> '797ff043-11eb-11e1-80d6-510998755d10'

uuid.noConflict()

(Browsers only) Set uuid property back to it’s previous value.

Returns the node-uuid object.

Example:

var myUuid = uuid.noConflict();
myUuid.v1(); // -> '6c84fb90-12c4-11e1-840d-7b25c5ee775a'

Deprecated APIs

Support for the following v1.2 APIs is available in v1.3, but is deprecated and will be removed in the next major version.

uuid([format [, buffer [, offset]]])

uuid() has become uuid.v4(), and the format argument is now implicit in the buffer argument. (i.e. if you specify a buffer, the format is assumed to be binary).

uuid.BufferClass

The class of container created when generating binary uuid data if no buffer argument is specified. This is expected to go away, with no replacement API.

Testing

In node.js

> cd test
> node test.js

In Browser

open test/test.html

Benchmarking

Requires node.js

npm install uuid uuid-js
node benchmark/benchmark.js

For a more complete discussion of node-uuid performance, please see the benchmark/README.md file, and the benchmark wiki [https://github.com/broofa/node-uuid/wiki/Benchmark]

For browser performance checkout the JSPerf tests [http://jsperf.com/node-uuid-performance].

Release notes

1.4.0

		Improved module context detection

		Removed public RNG functions

1.3.2

		Improve tests and handling of v1() options (Issue #24)

		Expose RNG option to allow for perf testing with different generators

1.3.0

		Support for version 1 ids, thanks to @ctavan [https://github.com/ctavan]!

		Support for node.js crypto API

		De-emphasizing performance in favor of a) cryptographic quality PRNGs where available and b) more manageable code

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

